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(a) Proof. We assume n and m are even. By definition (1.1) they can be written as
n=2a and m=2b
where a and b are integers. Consider their addition n+m:
n+m=2a+2b
=2(a+b) [Factorizing]
We have n+m is of the form 2(An Integer). By applying definition (1.1) in the <
direction we conclude that n+m is even.
n
(b) Proof. We assume n and m are even. By definition (1.1) they can be written as
n=2a and m=2b
where a and b are integers. Consider their subtraction N—m:
n-m=2a-2b
=2(a-h) [Factorizing]
We have n—m is of the form 2(An Integer). By applying definition (1.1) in the <
direction we conclude that n—m is even.

(c) Proof. We assume n and m are odd. By definition (1.3) they can be written as
n=2a+1 and m=2b+1
where a and b are integers. Consider N—m:
n—m=(2a+1)—(2b+1)

=2a-2b

=2(a-b) [Factorizing]
We have n—m is of the form 2(An Integer). By applying definition (1.1) in the <=
direction we conclude that n—m is even whenever n and m are odd.

(d) Proof. Let n be an odd number then by (1.3) there is an integer m such that
n=2m+1. Consider n*:
n?=(2m+1)’
=(2m+1)(2m+1)
=4m’ +4m+1=2(2m*+2m)+1  [Rewriting 4=2(2)]
We have n® = Z(An Integer) +1. By applying definition (1.3) in the < direction we

conclude that n? is odd.

(e) Proof. Let n be even. Then by definition (1.1) this can be written as
n=2a where a is an integer

Let m be odd then by (1.3) this can be written as
m=2b+1 where b is an integer

Consider n+m:
n+m=2a+2b+1=2(a+b)+1 [2(AnInteger)+1]

=a =m

(1.1) n is an even number <> N=2mM where m is an integer
(1.3) n isanodd number << n=2m+1 where m is an integer
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We have n+m is 2(Integer) +1 therefore by (1.3) n+m is odd.

(f) Proof. Let n be an odd number then by (1.3) there is an integer a such that
n=2a+1. Similarly let m be an odd number then there is an integer b such that
m=2b+1. Consider their product nm:

nm=(2a+1)(2b+1)

=4ab+2a+2b+1

=2(2ab+a+b)+1 [2(AnInteger)+1]
We have nm = 2(Integer ) +1. By applying definition (1.3) in the <= direction we
conclude that the product nm is odd.

(g) Proof. Since m is even we can write this as
m =2k where K is an integer
The product nm is given by
nm =n(2k) =2kn
Hence nm is a multiple of 2 therefore by definition (1.1) we conclude that nm is
even.
[
2.(1)) nisodd = n+1 iseven
Proof. We assume n is odd. Since n and 1 are odd therefore by proposition (1.4) we
have n+1 is even.
n

(i1) For any integer N we have n (n + 1) is even
Proof. If n is even then by the above proposition in Question 1(g) we have n (n + 1)

is even. However if n is odd then by the above proposition 2(i) we have n+1 is even.
Hence again by the above proposition in Question 1(g) we have n (n + 1) 1S even.

n
3. If n is odd then n’ —1 is even
Proof. By the proposition in Question 1(d) we have n is odd = n* is odd. Similarly
by the proposition in Question 1(f) we have n* is odd = nn? is odd. Hence nn* =n’
is odd. Since n’ and 1 are odd therefore by the proposition in Question 1(c) we have
n’ —1 is even. This is what was required.

4. (a) We need to prove a | 0.

Proof. Since ax0=0 therefore by definition (1.5) we have a| 0.
(b) We need to prove a | a.

Proof. Since ax1=a therefore by definition (1.5) we have a | a.

(1.1) n is an even number <> N=2m where m is an integer
(1.3) n is an odd number < n=2m+1 where m is an integer
(1.4) The sum of two odd numbers is even

(1.5) a divides b < there is an integer X such that ax=Db
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(c) We need to prove 1| a.

Proof. Since 1xa=a therefore by definition (1.5) we have 1 | a.

(d) Prove a‘ a’.

Proof. Since axa=a’ therefore by definition (1.5) we have a ‘ a’.

(e) Prove a‘ a".

Proof. Since axa"" =a" whichis a(Integer)=a" therefore by definition (1.5) we
have a‘ a".

(f) We have to prove a| b and alc = a‘ (b+c)

Proof. We have a| b and a| ¢ then by proposition (1.7) we have

a|(bm-+cn)
where m and n are arbitrary. Putting m=n=1 we have
bm+cn=b(1)+c(1)=b+c

the required result, a ‘ (b+c).

[
(g) Need to prove: a| b and a| c = a | bc
Proof. From a| b and a| C there are integers X and y such that
ax=b and ay=c

Multiplying together gives

ax(ay)=bc which simplifies to a*(xy)=bc
Since @’ (Integer) =bc therefore a*| bc.

n

(h) Need to prove: ac| bc = a| b where c#0
Proof. By using definition (1.5) on ac | bc we know there is an integer, X, such that
ac(x)=hc
Dividing through by ¢ gives
a(x)=b which implies a| b

(i) Prove a|b and c|d = ac|bd

Proof. From a| b and C| d we have integers X and y such that
ax=Db and cy=d
Multiplying together gives
ax(cy)=hd
ac(xy)=hd
ac(xy)=cd which is ac(Integer)=bd

(1.5) a| b < there is an integer X such that ax=b
(1.7) Ifalband a|c then a|(bm+cn)
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By using definition (1.5) in the direction <= we have ac | bd which is what was

required.

5. (a) We need to prove ‘If n is odd then 8| (n2 —1) ’

Proof. We assume n is odd so it can be written as N =2m+1 where m is an integer.
Consider n* —1:

n*—1=(2m+1)’ -1

= 4m* +4m+1 |-1 [Expanding]
::(2m+1)2
=4m’ +4m=4m(m+1) [Factorizing]

We know from the proposition in Question 2(ii) that m(m + 1) is even therefore we

have

n’—l=4m(m+1)
%/_/

Even

By definition (1.1) we can write m (m + 1) =2k where Kk is an integer. Hence we have
n’—1=4m(m+1)
%/_/
=2k (Even)
=4(2k) =8k
Since n® —1=8k which means 8(Integer)=n’—1 , therefore 8‘ (n2 —1) and this was

what we needed to prove.
u

(b) We need to prove “If n is odd then 32| (n2 +3)(n2 + 7)’

Proof. We assume n is odd so it can be written as N =2m+1 where m is an integer.
Consider the first term n* +3:

n*+3=(2m+1)" +3
:(4m2 +4m+1)+3 [Expanding (2m+1)2}
=4m’ +4m+4:4(m2 +m+1) [Factorizing]
Similarly consider second term n* + 7 :
n?+7=(2m+1)" +7
=(4m’ +4m+1)+7
=4m’ +4m+8 =4(m’ +m+2)

Multiplying these together gives
(n*+3)(n*+7)=4(m* +m+1)4(m’ +m+2)

=n*+3 =n’+7

=16 (m2+m+l)(m2+m+2)

=4x4

(1.1) n is an even number <> N=2mM where m is an integer
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Let m*+m+1=k where K is an integer. Substituting this into the above we have

(n2+3)(n2 +7):16(m2+m+1)[m2+m+1+1j

=k
—16k (k+1)
We know from the proposition in Question 2(ii) that k (k + 1) is even therefore we
can write k (k+1)=2/ where ¢ is an integer. We have
(n*+3)(n*+7)=16(2¢) [Substituting k(k+1)=2¢]
=32(
We have 32(Integer) = (n2 + 3)(n2 - 7) . By definition (1.5) we conclude that

32| (n*+3)(n* +7).

6. Show that if the last digit of an integer n is even then N is even.
Proof. Using the hint we have

n=(a, x10")+(a,, x10™")+(a, ,x10™*)+..+(a,x10*)+(a x10')+a,

m-1
=[10(a, x10™")+10(a, , x10"*)+10(a, , x10")+...+10(a, x10') +10(a,) | +3,
[Taking Out a Factor of 10]

(2x5)(a, x10™")+(2x5)(a,, x10"2)+(2x5)(a,_, x10™ ) +...

= +(2><5)(a2><10‘)+(2><5)(al) o

[Rewriting 10 as (2><5)]

. 5(a, x10™")+5(a,_, x10™?)+5(a,_, x10™ ) +... .
+5(a,x10')+5(a))
The last line says n= 2[An Integer] +a,. We assume @, is even because the given
proposition says “if the last digit of an integer n is even” and 4, is the last digit. We
can write a, =2b. We have

n= 2[An Integer] +4,

=2[An Integer |+ 2b = 2([An Integer ]+ 1)

(An Integer +1) = (Another Integer) therefore
n = 2( Another Integer )

and so by (1.1) we conclude that n is even.

7. Show that if the last digit of an integer n is odd then n is odd.
Proof. Very similar to the proof of Question 6.

(1.1) n is an even number <> Nn=2m where m is an integer
(1.5) a| b < there is an integer X such that ax=Db



