Complete Solutions to Exercise 1(d)

(a) *Proof.* We assume n and m are even. By definition (1.1) they can be written as n = 2a and m = 2b

where a and b are integers. Consider their addition n+m:

$$n+m=2a+2b$$

= $2(a+b)$ [Factorizing]

We have n+m is of the form 2(An Integer). By applying definition (1.1) in the \Leftarrow direction we conclude that n+m is even.

(b) *Proof.* We assume n and m are even. By definition (1.1) they can be written as n = 2a and m = 2b

where a and b are integers. Consider their subtraction n-m:

$$n-m = 2a-2b$$

= $2(a-b)$ [Factorizing]

We have n-m is of the form 2(An Integer). By applying definition (1.1) in the \Leftarrow direction we conclude that n-m is even.

(c) *Proof.* We assume n and m are odd. By definition (1.3) they can be written as n = 2a + 1 and m = 2b + 1

where a and b are integers. Consider n-m:

$$n-m = (2a+1)-(2b+1)$$

$$= 2a-2b$$

$$= 2(a-b) [Factorizing]$$

We have n-m is of the form 2(An Integer). By applying definition (1.1) in the \Leftarrow direction we conclude that n-m is even whenever n and m are odd.

(d) *Proof.* Let n be an odd number then by (1.3) there is an integer m such that n = 2m + 1. Consider n^2 :

$$n^{2} = (2m+1)^{2}$$

$$= (2m+1)(2m+1)$$

$$= 4m^{2} + 4m + 1 = 2(2m^{2} + 2m) + 1 \qquad \text{[Rewriting 4 = 2(2)]}$$

We have $n^2 = 2$ (An Integer) + 1. By applying definition (1.3) in the \Leftarrow direction we conclude that n^2 is odd.

(e) *Proof.* Let n be even. Then by definition (1.1) this can be written as n = 2a where a is an integer

Let m be odd then by (1.3) this can be written as

$$m = 2b + 1$$
 where b is an integer

Consider n+m:

$$n+m = \underbrace{2a}_{=a} + \underbrace{2b+1}_{=m} = 2(a+b)+1 \quad \left[2(\text{An Integer})+1\right]$$

- (1.1) n is an even number $\Leftrightarrow n = 2m$ where m is an integer
- (1.3) n is an odd number $\Leftrightarrow n = 2m+1$ where m is an integer

We have n+m is 2(Integer) +1 therefore by (1.3) n+m is odd.

(f) *Proof.* Let n be an odd number then by (1.3) there is an integer a such that n = 2a + 1. Similarly let m be an odd number then there is an integer b such that m = 2b + 1. Consider their product nm:

$$nm = (2a+1)(2b+1)$$

= $4ab+2a+2b+1$
= $2(2ab+a+b)+1$ $\lceil 2(\text{An Integer})+1 \rceil$

We have nm = 2(Integer) + 1. By applying definition (1.3) in the \Leftarrow direction we conclude that the product nm is odd.

(g) *Proof.* Since m is even we can write this as

$$m = 2k$$
 where k is an integer

The product *nm* is given by

$$nm = n(2k) = 2kn$$

Hence nm is a multiple of 2 therefore by definition (1.1) we conclude that nm is even.

2. (i) n is odd $\Rightarrow n+1$ is even

Proof. We assume n is odd. Since n and 1 are odd therefore by proposition (1.4) we have n+1 is even.

(ii) For any integer n we have n(n+1) is even

Proof. If n is even then by the above proposition in Question 1(g) we have n(n+1) is even. However if n is odd then by the above proposition 2(i) we have n+1 is even. Hence again by the above proposition in Question 1(g) we have n(n+1) is even.

3. If *n* is odd then $n^3 - 1$ is even

Proof. By the proposition in Question 1(d) we have n is odd $\Rightarrow n^2$ is odd. Similarly by the proposition in Question 1(f) we have n^2 is odd $\Rightarrow nn^2$ is odd. Hence $nn^2 = n^3$ is odd. Since n^3 and 1 are odd therefore by the proposition in Question 1(c) we have $n^3 - 1$ is even. This is what was required.

4. (a) We need to prove $a \mid 0$.

Proof. Since $a \times 0 = 0$ therefore by definition (1.5) we have $a \mid 0$.

(b) We need to prove $a \mid a$.

Proof. Since $a \times 1 = a$ therefore by definition (1.5) we have $a \mid a$.

- (1.1) n is an even number $\Leftrightarrow n = 2m$ where m is an integer
- (1.3) n is an odd number $\Leftrightarrow n = 2m+1$ where m is an integer
- (1.4) The sum of two odd numbers is even
- (1.5) a divides $b \Leftrightarrow$ there is an integer x such that ax = b

Proof. Since $1 \times a = a$ therefore by definition (1.5) we have $1 \mid a$.

(d) Prove $a \mid a^2$.

Proof. Since $a \times a = a^2$ therefore by definition (1.5) we have $a \mid a^2$.

(e) Prove $a \mid a^n$.

Proof. Since $a \times a^{n-1} = a^n$ which is $a(\text{Integer}) = a^n$ therefore by definition (1.5) we have $a \mid a^n$.

(f) We have to prove $a \mid b$ and $a \mid c \Rightarrow a \mid (b+c)$

Proof. We have $a \mid b$ and $a \mid c$ then by proposition (1.7) we have

$$a \mid (bm + cn)$$

where m and n are arbitrary. Putting m = n = 1 we have

$$bm + cn = b(1) + c(1) = b + c$$

the required result, $a \mid (b+c)$.

(g) Need to prove: $a \mid b$ and $a \mid c \Rightarrow a^2 \mid bc$

Proof. From $a \mid b$ and $a \mid c$ there are integers x and y such that

$$ax = b$$
 and $ay = c$

Multiplying together gives

$$ax(ay) = bc$$
 which simplifies to $a^2(xy) = bc$

Since a^2 (Integer) = bc therefore $a^2 \mid bc$.

(h) Need to prove: $ac \mid bc \implies a \mid b$ where $c \neq 0$

Proof. By using definition (1.5) on $ac \mid bc$ we know there is an integer, x, such that

$$ac(x) = bc$$

Dividing through by c gives

$$a(x) = b$$
 which implies $a \mid b$

(i) Prove $a \mid b$ and $c \mid d \Rightarrow ac \mid bd$

Proof. From $a \mid b$ and $c \mid d$ we have integers x and y such that

$$ax = b$$
 and $cy = d$

Multiplying together gives

$$ax(cy) = bd$$

$$ac(xy) = bd$$

$$ac(xy) = cd$$
 which is $ac(Integer) = bd$

(1.5) $a \mid b \iff$ there is an integer x such that ax = b

(1.7) If
$$a \mid b$$
 and $a \mid c$ then $a \mid (bm + cn)$

By using definition (1.5) in the direction \Leftarrow we have $ac \mid bd$ which is what was required.

5. (a) We need to prove 'If n is odd then $8 \mid (n^2 - 1)$ '

Proof. We assume n is odd so it can be written as n = 2m + 1 where m is an integer. Consider $n^2 - 1$:

$$n^{2} - 1 = (2m+1)^{2} - 1$$

$$= \left(\underbrace{4m^{2} + 4m + 1}_{=(2m+1)^{2}}\right) - 1 \qquad \text{[Expanding]}$$

$$= 4m^{2} + 4m = 4m(m+1) \qquad \text{[Factorizing]}$$

We know from the proposition in Question 2(ii) that m(m+1) is even therefore we have

$$n^2 - 1 = 4 \underbrace{m(m+1)}_{\text{Even}}$$

By definition (1.1) we can write m(m+1) = 2k where k is an integer. Hence we have

$$n^{2} - 1 = 4 \underbrace{m(m+1)}_{=2k \text{ (Even)}}$$
$$= 4(2k) = 8k$$

Since $n^2 - 1 = 8k$ which means $8(\text{Integer}) = n^2 - 1$, therefore $8 \mid (n^2 - 1)$ and this was what we needed to prove.

(b) We need to prove 'If n is odd then $32 | (n^2 + 3)(n^2 + 7)$ '

Proof. We assume n is odd so it can be written as n = 2m + 1 where m is an integer. Consider the first term $n^2 + 3$:

$$n^{2} + 3 = (2m+1)^{2} + 3$$

= $(4m^{2} + 4m + 1) + 3$ [Expanding $(2m+1)^{2}$]
= $4m^{2} + 4m + 4 = 4(m^{2} + m + 1)$ [Factorizing]

Similarly consider second term $n^2 + 7$:

$$n^{2} + 7 = (2m+1)^{2} + 7$$

$$= (4m^{2} + 4m + 1) + 7$$

$$= 4m^{2} + 4m + 8 = 4(m^{2} + m + 2)$$

Multiplying these together gives

$$(n^{2}+3)(n^{2}+7) = \underbrace{4(m^{2}+m+1)}_{=n^{2}+3} \underbrace{4(m^{2}+m+2)}_{=n^{2}+7}$$
$$= \underbrace{16}_{=4\times4} (m^{2}+m+1)(m^{2}+m+2)$$

(1.1) n is an even number $\Leftrightarrow n = 2m$ where m is an integer

$$(n^{2}+3)(n^{2}+7) = 16\underbrace{(m^{2}+m+1)}_{=k}\underbrace{(m^{2}+m+1)}_{=k} + 1$$

$$= 16k(k+1)$$

We know from the proposition in Question 2(ii) that k(k+1) is even therefore we can write $k(k+1) = 2\ell$ where ℓ is an integer. We have

$$(n^2+3)(n^2+7) = 16(2\ell) \qquad \left[\text{Substituting } k(k+1) = 2\ell \right]$$
$$= 32\ell$$
We have $32(\text{Integer}) = (n^2+3)(n^2+7)$. By definition (1.5) we conclude that

 $32 | (n^2 + 3)(n^2 + 7)$

6. Show that if the last digit of an integer n is even then n is even. *Proof.* Using the hint we have

$$n = (a_{m} \times 10^{m}) + (a_{m-1} \times 10^{m-1}) + (a_{m-2} \times 10^{m-2}) + \dots + (a_{2} \times 10^{2}) + (a_{1} \times 10^{1}) + a_{0}$$

$$= \left[10(a_{m} \times 10^{m-1}) + 10(a_{m-1} \times 10^{m-2}) + 10(a_{m-2} \times 10^{m-3}) + \dots + 10(a_{2} \times 10^{1}) + 10(a_{1})\right] + a_{0}$$
[Taking Out a Factor of 10]
$$= \left[(2 \times 5)(a_{m} \times 10^{m-1}) + (2 \times 5)(a_{m-1} \times 10^{m-2}) + (2 \times 5)(a_{m-2} \times 10^{m-3}) + \dots + (2 \times 5)(a_{2} \times 10^{1}) + (2 \times 5)(a_{1})\right] + a_{0}$$
[Rewriting 10 as (2×5)]

$$=2\begin{bmatrix}5\left(a_{m}\times10^{m-1}\right)+5\left(a_{m-1}\times10^{m-2}\right)+5\left(a_{m-2}\times10^{m-3}\right)+\dots\\+5\left(a_{2}\times10^{1}\right)+5\left(a_{1}\right)\end{bmatrix}+a_{0}$$

The last line says n = 2 [An Integer] + a_0 . We assume a_0 is even because the given proposition says "if the last digit of an integer n is even" and a_0 is the last digit. We can write $a_0 = 2b$. We have

$$n = 2$$
[An Integer] + a_0
= 2[An Integer] + $2b = 2$ ([An Integer] + 1)

(An Integer + 1) = (Another Integer) therefore

$$n = 2$$
 (Another Integer)

and so by (1.1) we conclude that n is even.

7. Show that if the last digit of an integer n is odd then n is odd. *Proof.* Very similar to the proof of Question 6.

^(1.1) n is an even number $\Leftrightarrow n = 2m$ where m is an integer

^(1.5) $a \mid b \Leftrightarrow$ there is an integer x such that ax = b