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Complete Solutions to Exercise 1(d) 
1. 
(a) Proof. We assume  are even. By definition (1.1) they can be written as  and  n m

b2   and   2n a m= =  
where  and b  are integers. Consider their addition a n m+ : 

( ) [ ]
2 2

2        Factorizing
n m a b

a b
+ = +

= +
 

We have  is of the form 2(An Integer). By applying definition (1.1) in the  
direction we conclude that  is even. 

n m+ ⇐
n m+

■ 
(b) Proof. We assume  are even. By definition (1.1) they can be written as  and  n m

b2   and   2n a m= =  
where  and b  are integers. Consider their subtraction a n m− : 

( ) [ ]
2 2

2        Factorizing
n m a b

a b
− = −

= −
 

We have  is of the form 2(An Integer). By applying definition (1.1) in the  
direction we conclude that  is even. 

n m− ⇐
n m−

■ 
(c) Proof. We assume  are odd. By definition (1.3) they can be written as  and  n m

2 1  and   2 1n a m b= + = +  
where  and b  are integers. Consider n ma − : 

( ) ( )

( ) [ ]

2 1 2 1
2 2
2        Factorizing

n m a b
a b
a b

− = + − +

= −

= −

 

We have  is of the form 2(An Integer). By applying definition (1.1) in the  
direction we conclude that  is even whenever  are odd. 

n m− ⇐
n m− and  n m

1

■ 
(d) Proof. Let  be an odd number then by (1.3) there is an integer  such that 

. Consider : 
n m

2n m= + 2n
( )
( )( )

( ) ( )

22

2 2

2 1

2 1 2 1

4 4 1 2 2 2 1 Rewriting 4 2 2

n m

m m

m m m m

= +

= + +

= + + = + + =⎡ ⎤⎣ ⎦

 

We have . By applying definition (1.3) in the ⇐  direction we 
conclude that  is odd. 

2n = (2 An Integer 1+)
2n

■ 
(e) Proof. Let  be even. Then by definition (1.1) this can be written as n

2   where   is an integern a a=  
Let m be odd then by (1.3) this can be written as 

2 1   where  is an integerm b b= +  
Consider : n m+

( ) ( )2 2 1 2 1 2 An Integer 1
a m

n m a b a b
= =

+ = + + = + + +⎡ ⎤⎣ ⎦     

(1.1)   n  is an even number  ⇔ 2n m=  where m is an integer 
(1.3)   n  is an odd number  ⇔ 2n m 1= +  where m is an integer 
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We have  is 2(Integer) +1 therefore by (1.3) n m+ n m+  is odd. 

■ 
 (f) Proof. Let  be an odd number then by (1.3) there is an integer a such that 

. Similarly let m be an odd number then there is an integer b such that  
n

2n a= +1
12m b= + . Consider their product nm : 

( )( )

( ) (

2 1 2 1
4 2 2 1

2 2 1 2 An Integer 1

nm a b
ab a b

ab a b

= + +

= + + +

= + + + +)⎡ ⎤⎣ ⎦

 

We have . By applying definition (1.3) in the nm = ( )2 Integer 1+ ⇐  direction we 
conclude that the product  is odd. nm

■ 
(g) Proof. Since m  is even we can write this as  

2m k=  where  is an integer k
The product  is given by nm

( )2 2nm n k kn= =    
Hence  is a multiple of 2 therefore by definition (1.1) we conclude that nm  is 
even. 

nm

■ 
2. (i)  is odd ⇒   is even n 1n+
Proof. We assume  is odd. Since  and 1 are odd therefore by proposition (1.4) we 
have  is even. 

n n
1n+

■ 
(ii) For any integer n  we have ( )1n n +  is even 

Proof. If  is even then by the above proposition in Question 1(g) we have  
is even. However if  is odd then by the above proposition 2(i) we have  is even. 
Hence again by the above proposition in Question 1(g) we have 

n ( )1n n +
n 1n+

( )1n n +  is even. 
■ 

3.  If  is odd then  is even n 3 1n −
Proof. By the proposition in Question 1(d) we have n  is odd   is odd. Similarly 
by the proposition in Question 1(f) we have  is odd   is odd. Hence  
is odd. Since  and 1 are odd therefore by the proposition in Question 1(c) we have 

 is even. This is what was required. 

⇒ 2n
2n ⇒ 2nn 2 3nn n=

3n
3 1n −

■ 
4. (a) We need to prove 0a . 

Proof. Since  therefore by definition (1.5) we have 0 0a× = 0a . 

(b) We need to prove a a . 

Proof. Since  therefore by definition (1.5) we have 1a× = a a a . 
 
(1.1)   n  is an even number  ⇔ 2n m=  where m is an integer 
(1.3)   n  is an odd number  ⇔ 2n m 1= +  where m is an integer 
(1.4)    The sum of two odd numbers is even 
(1.5)   a  divides b    there is an integer ⇔ x  such that ax b=  
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(c) We need to prove 1 a . 

Proof. Since 1  therefore by definition (1.5) we have a a× = 1 a .  

(d) Prove 2a a . 

Proof. Since  therefore by definition (1.5) we have 2a a a× = 2a a . 

(e) Prove na a . 

Proof. Since   which is 1na a a−× = n ( )Integer na a=  therefore by definition (1.5) we 

have na a . 

(f) We have to prove ( )  and   a b a c a b c⇒ +  

Proof. We have   and   a b a c  then by proposition (1.7) we have  

( )a bm cn+  
where  and  are arbitrary. Putting m n 1m n= =  we have  

( ) ( )1 1bm cn b c b c+ = + = +  

the required result, ( )a b c+ . 
■ 

(g) Need to prove: 2  and   a b a c a bc⇒  

Proof. From   and   a b a c  there are integers x  and y  such that 
ax b=  and ay c=  

Multiplying together gives 
( ) ( )2which simplifies toax ay bc a xy bc= =  

Since ( )2 Integera bc=  therefore 2a bc . 
■ 

(h) Need to prove: ac bc a b⇒  where 0c ≠  

Proof. By using definition (1.5) on ac bc  we know there is an integer, x , such that 

( )ac x bc=  
Dividing through by  gives c

( )a x b=  which implies a b  
■ 

 (i)  Prove    and   ca b d ac bd⇒  

Proof. From   and   a b c d  we have integers x  and  such that y
ax b=  and cy d=  

Multiplying together gives 
( )
( )

ax cy bd

ac xy bd

=

=
 

( )ac xy cd=   which is ( )Integerac bd=  

(1.5)   a b     there is an integer ⇔ x  such that ax b=  

(1.7)    If a b  and  a c  then ( )a bm cn+  
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By using definition (1.5) in the direction ⇐  we have ac bd  which is what was 
required. 

■ 
5. (a) We need to prove ‘If  is odd then n ( )28 1n − ’ 
Proof. We assume  is odd so it can be written as n 2n m 1= +  where  is an integer. 
Consider : 

m
2 1n −

( )

( )

[ ]

( ) [ ]
2

22

2

2 1

2

1 2 1 1

4 4 1 1 Expanding

4 4 4 1 Factorizing

m

n m

m m

m m m m

== +

− = + −

⎛ ⎞
⎜ ⎟= + + −
⎜ ⎟
⎝ ⎠

= + = +

 

We know from the proposition in Question 2(ii) that ( )1m m+  is even therefore we 
have 

( )2

Even

1 4 1n m m− = +  

By definition (1.1) we can write ( )1 2m m k+ =  where  is an integer. Hence we have k

( )

( )

2

2  (Even)

1 4 1

4 2 8
k

n m m

k k
=

− = +

= =
 

Since  which means 2 1 8n − = k ( ) 28 Integer 1n= −  , therefore ( )28 n −1  and this was 

what we needed to prove. 
■ 

(b) We need to prove  ‘If  is odd then n ( )( )2 232 3 7n n+ + ’ 
Proof. We assume  is odd so it can be written as n 2n m 1= +  where  is an integer. 
Consider the first term : 

m
2 3n +

( )

( ) ( )

( ) [ ]

22

22

2 2

3 2 1 3

4 4 1 3                        Expanding 2 1

4 4 4 4 1        Factorizing

n m

m m m

m m m m

+ = + +

⎡ ⎤= + + + +⎣ ⎦

= + + = + +

 

Similarly consider second term 2 7n + : 
( )
( )

( )

22

2

2 2

7 2 1 7

4 4 1 7

4 4 8 4

n m

m m

m m m m

+ = + +

= + + +

= + + = + + 2

 

Multiplying these together gives 
( )( ) ( ) ( )

( )(
2 2

2 2 2 2

3 7

2 2

4 4

3 7 4 1 4

16 1 2
n n

n n m m m m

m m m m
= + = +

= ×

+ + = + + + +

)

2

= + + + +
 

(1.1)   n  is an even number  ⇔ 2n m=  where m is an integer 
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Let  where k  is an integer. Substituting this into the above we have 2 1m m k+ + =

( )( ) ( )

( )

2 2 2 23 7 16 1 1

16 1

k
k

n n m m m m

k k

=
=

⎛ ⎞
+ + = + + + + +⎜ ⎟

⎝ ⎠

= +

1
 

We know from the proposition in Question 2(ii) that ( )1k k +  is even therefore we  

can write  where  is an integer. We have  ( )1 2k k + =

( )( ) ( ) ( )2 23 7 16 2      Substituting  1 2

                         32

n n k k+ + = + =⎡ ⎤⎣ ⎦
=

 

We have . By definition (1.5) we conclude that ( ) ( )(2 232 Integer 3 7n n= + + )
( )( )2 232 3 7n n+ + . 

■ 
6. Show that if the last digit of an integer  is even then  is even. n n
Proof. Using the hint we have 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

[ ]
( )( ) ( )( ) ( )( )

( )( ) ( )( )

1 2 2 1
1 2 2 1 0

1 2 3 1
1 2 2 1

1 2 3
1 2

1
2 1

10 10 10 ... 10 10

10 10 10 10 10 10 ... 10 10 10

Taking Out a Factor of 10

2 5 10 2 5 10 2 5 10 ...

2 5 10 2 5

m m m
m m m

m m m
m m m

m m m
m m m

n a a a a a a

a a a a a

a a a

a a

− −
− −

− − −
− −

− − −
− −

= × + × + × + + × + × +

⎡ ⎤= × + × + × + + × + +⎣ ⎦

⎡ × × + × × + × × +
=

+ × × + ×⎣

( )

( ) ( ) ( )
( ) ( )

0

1 2 3
1 2

01
2 1

Rewriting 10 as 2 5

5 10 5 10 5 10 ...
2

5 10 5

m m m
m m m

a

a a a
a

a a

− − −
− −

⎤
⎢ ⎥

0a

+
⎢ ⎥⎦

×⎡ ⎤⎣ ⎦
⎡ ⎤× + × + × +
⎢ ⎥= +
⎢ ⎥+ × +⎣ ⎦

The last line says [ ] 02 An Integern = a+

b

. We assume  is even because the given 
proposition says “if the last digit of an integer n  is even” and  is the last digit. We 
can write . We have 

0a

0a

0 2a =

[ ]
[ ] [ ]( )

02 An Integer

2 An Integer 2 2 An Integer 1

n a

b

= +

= + = +

)

 

(An Integer 1+ =  (Another Integer) therefore  

( )2 Another Integern =  
and so by (1.1) we conclude that  is even. n

■ 
7. Show that if the last digit of an integer  is odd then n  is odd. n
Proof. Very similar to the proof of Question 6. 
 
 
(1.1)   n  is an even number  ⇔ 2n m=  where m is an integer 
(1.5)   a b     there is an integer ⇔ x  such that ax b=  


