Exercise 5(f)

- 1. By using the "Monotone Convergence Theorem" show that $\lim_{n\to\infty} (x_n) = 0$ where $x_n = \frac{1}{n}$.
- 2. By using the "Monotone Convergence Theorem" show that $\lim_{n\to\infty} (x_n) = 0$ where $x_n = \frac{1}{\sqrt{n}}$.
- 3. Let $x_1 = 1$ and $x_{n+1} = \frac{1}{5}(x_n + 3)$. Prove that $\lim_{n \to \infty} (x_n) = \frac{3}{4}$.
- 4. Prove that the sequence $x_n = \sqrt{1 \frac{1}{n}}$ is convergent by using the Monotone Convergence Theorem.
- 5. Let (x_n) be a real sequence defined by

$$x_1 = 2$$
 and $x_{n+1} = \frac{x_n}{2} + \frac{3}{2x_n}$ (②)

Prove that the sequence (x_n) defined in (\odot) is monotone and bounded. Also prove that $\lim_{n\to\infty} (x_n) = \sqrt{3}$.

6. Let (x_n) be a real sequence defined by

$$x_1 = 1$$
 and $x_{n+1} = \sqrt{1 + x_n}$

Show that the sequence (x_n) is monotone and bounded. Also determine $\lim_{n\to\infty}(x_n)$.

7. Let (x_n) be a real sequence defined by

$$x_1 = 1$$
 and $x_{n+1} = \sqrt{2 + x_n}$

Show that the sequence (x_n) is monotone and bounded. Also determine $\lim_{n\to\infty}(x_n)$.

- 8. Prove the Monotone Convergence Theorem (5.23) which says- "A **bounded monotone** sequence of real numbers is **convergent**" for a **bounded decreasing** sequence.
- 9. Prove Proposition (5.25) which says that if (x_n) is a bounded decreasing sequence of real numbers then

$$\lim_{n\to\infty} (x_n) = \inf \{x_n \mid n\in\mathbb{N}\}$$

where inf is the infimum (Greatest Lower Bound) of the set.

Brief Solutions to Exercise 5(f)

- 1. Show that $x_n = \frac{1}{n}$ is decreasing and then by induction prove $x_n \le 1$.
- 2. Prove that $x_n = \frac{1}{\sqrt{n}}$ is decreasing by using

$$n+1>n \iff \frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}$$

Then by induction show that $x_n \le 1$.

3. Show by induction that x_n is decreasing by proving

$$x_{k+1} - x_k \le 0$$

Again by induction show $x_n \ge 3/4$.

- 4. Show that $x_n = \sqrt{1 \frac{1}{n}}$ is an increasing sequence and also prove that $x_n \le 1$.
- 5. Very similar to Example 27. Prove that $x_n \ge \sqrt{3}$ and (x_n) is decreasing.
- 6. Show that the sequence (x_n) is increasing and it is bounded by proving $x_n \le 1.7$. The limiting value is $\lim_{n \to \infty} (x_n) = 1.618$.
- 7. Show that the sequence (x_n) is increasing and it is bounded by proving $x_n \le 2$. The limiting value is $\lim_{n \to \infty} (x_n) = 2$.
- 8. Very similar to proof of (5.23) but use proposition (5.6) rather than (5.5).
- 9. Proof in solution to Question 8.